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Abstract

The gravitational waves, produced by the massive objects with strong asymmetry, are the
subject of important research. Indeed, they are predicted by the theory of the relativity
of Albert Einstein, like a consequence of the equivalence principle. These waves are totally
characterized by their source, and are entirely linked to its mass and shape. Their recent
detection is a good point for the validity of the relativistic theory of Einstein, and give us
some responses in cosmology or astrophysics.

The topic of the following thesis is the characterization of the gravitational waves quasi-normal
modes.

The study is firstly based on mathematics side with the expansion of the Einstein equations
on the tensorial basis of the spherical harmonics, the problem being spherically symmetric.
Then, we study the quasi-normal modes, and finally, we make the same expansion with a
source term.

Résumé

Les ondes gravitationnelles, produites par des objets massifs & forte assymétrie, font I'objet
de vives recherches. En effet, elles sont prédites par la théorie de la relativité d’Albert Einstein,
comme conséquence du principe d’équivalence. Ces ondes sont entierement caractérisées par
leur source, puisqu’elles dépendent de sa masse ainsi que de sa forme. Leur récente détection
est un renfort a la validité de la théorie relativiste d’Einstein, et nous apporte aussi plusieurs
réponses dans des domaines variés comme la cosmologie ou 'astrophysique.

Le sujet de la these suivante est la caractérisation des modes quasi-normaux des ondes grav-
itationnelles.

L’étude est d’abord basée sur un aspect tres mathématique avec le développement des
équations de Einstein perturbées sur la base tensorielle des harmoniques sphériques, le probleme
étant a symétrie sphérique. Nous mettrons ensuite en exergue les modes quasi-normaux, et
enfin nous ferons le méme développement avec un terme source.



Sommario

Le onde gravitazionali, prodotte per degli oggetti massivi con forte asimmetria, fanno
loggetto di importante ricerche. Sono previste per la teoria della relativita di Albert Einstein,
come consequenza del principio di equivalenza. Queste onde sono interamente caratterizzate
per la loro sorgente, in fatti, sono legate alla sua massa e la sua forma. La loro recente rive-
lazione € un conforto alla validita della teoria relativistica di Einstein, e ci da anche plurale
risposte nella cosmologia o ’astrofisica.

11 soggetto della tesi seguente e la caraterizzazione dei modi quasi-normali delle onde gravi-
tazionali.

Lo studio ¢ primo basato su un aspetto molto matematico con il sviluppo degli equazioni di
Eintein perturbate sulla basa tensoriale degli armoniche sferiche, il problemo essendo a sim-
metria sferica. Dopo, studiamo i modi quasi-normali, e alle fine, facciamo lo stesso sviluppo
con un termine sorgente.
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1 Introduction

The recent detection of the gravitational waves by the interferometer LIGO has permit to verify the
gravitational theory of the general relativity. Indeed, these ones were predicted like a consequence of
this theory. A such detection, has several results. The object detected corresponds to a normal mode
of a massive object, a black hole. The gravitational waves were predicted by the Einstein theory,
and are observables in the case of massive and asymmetric object ; in fact the intensity of waves is
directly linked to the mass and the quadripolar moment of its source. How can we characterize these
waves 7

In the astrophysical field, there are two main consequences, the first one consists on the under-
standing of black holes ; indeed, produced by the massive objects, the gravitational waves are totally
linked to their source. The waves detected were coming from a black hole of 30-40 solar masses
whereas the mass was expected like ten solar masses, which implies the existence of supermassive
stars never observed, why ? Beyond the black holes, these waves teach us about the galactic centers
formed by a supermassive black hole ; for example, in the case of the Milky Way, this one weighs
more than four million solar masses.

Concerning the cosmology, the waves bring some responses to the question of the Big Bang, the
inflation and the expansion of the Universe. Indeed, the deformation of the space-time induced by
the expansion of the Universe produces some gravitational waves which can be detected. Thus, we
can learn some things about the Big Bang, detecting some waves coming from this era. Since the
waves come from massive object, in the hypothesis of the existence of the dark matter, they could
highlight the dark matter clusters in the Universe, and thus permit to detect it.

Based on the general relativity, like Einstein equations and the basis concepts of the special rela-
tivity like the coordinate time, the following thesis will study the production and the modes of the
gravitational waves.

In a first part, since the background of the problem is spherically symmetric, we will expand all
the quantities on the tensorial spherical harmonics basis. Then, the second purpose will concern
the calculation of the perturbed metric caused by the introduction of a particle falling radially on
the black hole, which corresponds to the source term of the gravitational waves ; because of the
asymmetry.



2 Definitions of the problem

2.1 Elements of general relativity
2.1.1 Metric of the Schwarzschild black hole

To describe the black hole oscillations at the origin of the gravitational waves, we have to define
the metric of the perturbed black hole :

Guv = 921/ + hu ;

with ggl, is the exact solution of Einstein equations. In the case of a Schwarzschild black hole, it is
the Schwarzschild solution : the static metric, asymptotically the Minkowski metric 7, .

1 0 0 0
~lo -1 0 o0
v =10 0o -1 0
0 0 0 -1

This solution is the only spherically and asymptotically flat solution of the vacuum Einstein field
equations for a non-rotating object.
The line-element of the Schwarzschild metric is expressed by :

ds® = -(1- Z2) ¢ dt® + —4r dr® + 1* (d6? + sin®6 d¢?),

1

where 7, = QfQM is the Schwarzschild radius, G the gravitational constant, M the mass of the object

and c the light velocity in vacuum. In the following parts, we will use the natural units, i.e. G=c=1.
The Schwarzschild radius defines the event horizon of a Schwarzschild black hole. For a distance from
the black hole less than this radius, we can’t have information about the events inside this volume.
The spherical surface of radius s is a spacelike surface, i.e. it can be through only in one direction,
and in our case for r decreasing.

instein’s equations, which lin e behaviour o e matter an e stress-ener ensor, are :
Einstein’s equati , which link the behavi f th tt d the st gy t ,
GW = ngf Ty

with Guo = Ruw - % guv R, where R, is the Ricci’s tensor and R the curvature of the space.
T, is the stress-energy tensor. For a system of n particles, it is defined by
pv 1 pdad 4
™ =c%, [ ﬁpnmts (x — zpn)dmn
with g the determinant of the metric, and p,, and 7,, respectively the momentum and the proper

time of the particle n.
In the case of vacuum, T#” is null, and the Einstein’s equations are just :

G =0

Now, we have the metric used to describe a Schwarszchild’s black hole. There exists two important
things for this metric :

-the first one is the asymptotical limit 7,,, the minkowskian space of dimension 4
-the second one is about the two singularities, r = rs which defines the event horizon, and r — 0
which is a mathematical singularity.

2.1.2 Einstein’s equations for black hole oscillations

In the previous section, we have seen that the metric for the oscillations is g,., = g?“, + hy,,
with g?w the Schwarzschild’s metric. In our theory, we will consider h,, like a perturbation of the
Schwarzschild metric, thus we have || << g0, |.

The idea is to solve the Einstein equations for the perturbation. The Einstein tensor for the perturbed
metric is at the first order



Figure 1: Spherical coordinates.

Gu = G;W(g?W) + 6 Guu(h) + O(h2)

According to the previous section, in vacuum, GW(ggu) = 0, and thus the Einstein’s equations for
the perturbed metric tensor are :

0 Guv(h) = 0, which are linear in hy,.

We can express the Einstein tensor as Gpuv= Ry, + %gw,R (see annex 6.1). We recall the expression
of the Riemann tensor :

Raguw = % [8av.6u - Bau.pr + Eouav - Lbv,ap)

where ,, is the ordinary derivative with respect to the coordinate .
The Ricci tensor is defined by Rgs = R3,s = g™ Rypas-
The curvature of the metric is defined by R = ga*e Rag.-

At the first order in h, we expand the expression of R;; and g;;R, using g;; = g?j + hy; and g¥
— 0% ij
=g -h".

After some calculations (see annex 6.2), we obtain the explicit expression :
3G (h) = -5 - (Mik)w - (M%) + 2 Rapsu (") + b - RY(8")hua - Ri(8%)hva +
g ()™ - (08,5)"7 - R*(g°)has + R(g”)hyuw] = 0.

2.2 Expansion in spherical harmonics

The background of the problem is spherically symmetric since the system is a massive sphere.
Indeed, each quantity can be expressed as a function of the coordinate time t, the radial position r,
the equatorial angle 6, and the azimuthal angle ¢. For t fixed, the geometrical coordinates (r, 8, ¢)
are defined on the following figure from x, y and z, which are the cartesian coordinates of the real
space at three dimensions.

Hence, we need to expand a tensor of rank 2 in spherical harmonics (see annex 6.3). This is possible
according to Regge and Wheeler (1957) and Zerilli (1970).
This is possible for quadrivector (see annex 6.4), and also for tensor of rank 2.

The general idea is to use the procedure used for quadrivectors for the tensors. We have to find a
basis for tensors.
According to Zerelli (1970), the basis is formed by ten tensors harmonics, given by the following
expressions.



aim = [er €r Yim]

bim = V2 n(l) 1 [er V Yin]

am = V2 n(l) r [er L Yin]

dim = fm() (L V Yim] + 1 [er V Y]

fim = 5 m() (erm + him)

gim = -5 22(1) (e1m - hum) (1)
al(?rz = [et et Yim]

apy) = V2 [er er Y

by, = V2 0(l) 1 [er V Yin]

¢ = V2 1(l) et L Yim]

Where

eim =1° ([V V Y] + % [er V Yin])
him = = [L LYl +1ler V Yim)
) =

m(l) = .

1(141)(I—1)(1+2)
Thus, we can extend any symmetric tensor T(t, r, 6, ¢) as follows :

Sim [A(O) (O) + l(j,f al(},f + A am + Bl(?,z bESl + Bim bim + Q<O] ?rz + Qim Cim + Gim gim +
Dlm dlm + Flm flm ]
And the coefficients are found by the relations :

AL (4, 1) = [a D" T, sin0 d0d¢

An important result is the following : the coefficients depend only of t and r, not of the angles. The
angular dependence is in the spherical harmonic basis.

2.3 Parity

A parity transformation is a simultaneous inversion of the cartesian axis. In spherical coordinates,
the transformation is the following :

0,¢) = (mr—0,7m+0)

For these transformations, there exists a relation for spherical harmonics :

Yim(m— 60,7 +6) = (-1)'Y0n (6, 6)
since Py (-x) = (-1)"T™Pn (x).

The factor (-1)! is the parity of the spherical harmonic : if 1 is even, the parity is said polar, if 1
is odd, the parity is said axial.
The spherical harmonic tensors aym, bim, fim, Sim, &
these tensors are polar.
The tensors cim, din and Cl(,?rz have a transformation with 1 odd, and thus these tensors are axials.
Like we have developed a tensor on the spherical harmonic basis, we can decompose a tensor T =
Taew + Tpol.
Now we have the basis to solve our problem.

0) M)

im0 and bl(gz follow a law with 1 even, so

3 Black hole oscillations

3.1 Expansion in spherical harmonics

The background of the problem is spherically symmetric, by the previous section, we can expand
a tensor in spherical harmonics, and decompose it in an axial part and a polar part. This is almost
true for the perturbation h,,, and we have :



hy = h%% + he

with,
h** = Yim [ l(,?yl Cl('?rz + le Clm + Dim dlm]
hpOl = [ A<0) + <1) ) + Alm aim + B<0 b(o) + Blm blm + Glm gim + Flm flm }

The coefficients of the expansion have to be found solving Einstein’s equations. We can write :

D (t, r) =20+ D - 1)(1 +2) haim (t, )
O, 1) = -L\/200 + 1) haf (¢,

s =

- r) (2)
le(t7 I') = % l(l+ 1) 1lm(t I‘)

We have three axial functions : h§*(t, r), h{®(t, r) and ha(t, r).

Fim(t, r): «/l(l+1)(l 1)(1+2) Vim(t, 1)

A9, 1) = Nlm(t r)
AN (¢, 1) = \/ 2 Hygm(t, 1)
A (t, T e Lim(t, r (3)

\/21(1+1
m(t, 1)
20141
(\/-g ) Vlm(t7 I')

Blnz(t7 T
Glm(t7 r)= 'Zf Tlm(

)
)2 )
B (t,1) = V”““ hotm (£, 1)
) = i
) = r) +

We have seven polar functions : V(t, r), N(t, r), Hi(t, r), L(t, r), ho(t, ), hi(t, r) and T(t, r).
The functions e?” and e** are the coefficients of the unperturbed metric of Schwarzschild g9, and
gor-

e = (1- =), e®* = L r, is the Schwarzschild’s radius.

Having computed the expression of h,, on the spherical harmonic basis, we obtain :

0 ha® sin 09 Yim 0 —h@® 9, Yim
he* = pof hgx sin 089)/2771 —ha % sin 0 Xim hlllx sin 989 —hQ 5 sm 0 Wim
" 0 h$® sin 995 0 —h$? 508 Yim
—hg" 220sYim —ha 2 sin 0 Wi,  —h{" 120,V ha 1 sin 6 Xy
2¢* N Y, —ho 9sYim —Hi Yim  —ho 06 Yim
el 5, —ho OgYim —2r%sin?@ Hix  h1 93Yim  —12 V X
m 7H1 Ylm hl 8¢Ylm 7262>\ L Ylm hl Bngm
—ho angm —7“2 Vv le h1 89Ylm —27“2 H33
With

Xim = 2 8¢ [89 - cot 0] Ylm

Wi = [83 - cot, 9 0y - sm29 8¢ } Yim
Hiy = [T =+ V( n29 8¢ + cot 6 89)] Yim
Hss = [T +V 3@] Yim

At this point, according to the general relativity, we have the freedom of making a coordinate
transformation, i.e. to choose a gauge, in which to solve Einstein’s equations. This is called a choice
of gauge.

3.2 The choice of the gauge

This choice of gauge, or freedom on the coordinate allos to redjuce the number of unknown func-
tions. To choose an appropriate gauge, we can make an infinitesimal coordinate transformation

<7 = xJ + gj}

10



where ¢’ is an infinitesimal vector.
We need to compute the perturbed metric according to this transformation.
We know that the transformation of the metric is g’y = A}, A} gi;, where A is the matrix of the

transformation defined by A} = j;,i .
So,
dz® da®
8'ij = ot 4w7 Bab
Since dx® = dx’® - d £ and % = 5;-, the Kronecker’s symbol, we have at the first order in &

(infinitesimal transformation),

glij = 07 02 gab - 07 €% Bab - 67 € Gab

Using the fact that for a vector V* we have Vi, = V* gup,
The preceeding equation becomes

glij = 8ij - Eai - &b,

Like the covariant derivative and the normal derivative coincide by the equivalence principle, we
can use this result for the perturbed metric, noting by .; the covariant derivative according to the
coordinate i, and this is true for every locally inertial frame,

h’z‘j = hij - fi;j - fj;i = hij - &J - fj,i + 2F§j &k

This equality comes from the relation between covariant and normal derivative &;; = & ; - Ffj &k,
and the fact that Ffj, the Cristoffel symbol, is symmetric under the exchange between i and j.

Since we have expand a tensor in spherical harmonics, we have to expand also the vector £ in vector
spherical harmonics, and analogously, we have the following decomposition, between a polar part

and an axial part :

£ _ £pol 4 £az

where

€% = (0,ir £ sin 0 8y Yim, 0, -ir £ L9, Y, )

Im sin

{ Pt = ( fl(?rz Yim, -fl(f,f 0¢ Yim, -fl(frf Yim, -fl(,g,z 0o Yim )
We can set four new functions :

= —fgzz (t, r) — polar
= -fgiz (t, r) — polar
irfl (t, r) — axial

=-irf),/

(5)

To choose a gauge, we will study separately the two components of the metric, choosing a polar
gauge and an axial gauge.

3.2.1 Polar part of the perturbed metric

We consider only the even perturbations. Using the same transformation than before, having
computed the different Cristoffel’s symbol,

Wi =hy -2 Moy Yim + 2 v, ¥ My Yoo

Rtp = hig - Mo g Yim - M2y 05 Yim

W ir =her - Moy Yim - M1t Yim + 2 v Mo Yim

h'vo = heg - Mo 9o Yim - Mot G0 Yim

W g6 = hg - 2 Mo 95 Yim - 2[r e > My sin®0 Yy, + Mo sin 6 cos 6 9 Yo, | (6)
hlrd) = h'rqS - M2,r 8¢ Ylm - Ml a¢> Ylm —+ % M2 8¢ Ylm

h/¢9 = h¢9 -2 Mo 898¢ Yim + 2 M cot 6 8¢ Yim

h'/rr - hrr -2 Ml,r Ylm + 2 >\,r Ml Ylm

B =heo - Moy 99 Yim + 2 Mz 89 Yim

11



Consequently to the gauge transformation, all polar coefficients are transformed as follows :

N =N —¢e % Mo,: + v,r e 2 M,
L'=L+4+e 2 Mi,-Are 2 M,
T'=T+1-e* M

H'y =Hi + Mo, - v, Mo M1, (7)
h'o =ho + Mo + Ma s
V= VM5

h'1:h1-M2,r+%-M1

A possible choice of a polar gauge is to use the same asin the paper on stellar perturbations by
Chandrasekhar and Ferrari, or in The mathematical theory of black holes, which imposes that Moy,
M; and M satisfy the equations :

H;=0,ho=0,h1 =0

If we let the same expression for the others coefficients, we finally find a polar perturbed metric
tensor like :

2¢? N Yim 0 0 0
el — 0 —27? sin?¢ Hyy 0 —1% V Xy,
Im 0 0 -2 L Yo, 0
0 *T’2 Vv le 0 727‘2 H33

expressed in the basis (e, eq, er, ).

3.2.2 Axial part of the perturbed metric

Now, we consider the odd perturbations.

h/tt = htt

h/t¢ = ht¢ + M37t sin 0 9s Yim

h/t'r = ht'r

B'io =hig - Msy =5 0 Yim (8)
hl¢¢ = h¢¢ + 2 M3 sin 0 Op 8¢ Yim - 2 M3 cos 0 (9¢ Yim

h/m& = hr¢ + M3,r sin @ 9 Yim - % M;s sin 8 99 Yim

B0 = hgo + Ms sin 0 95 Yim - M3 cos 0 9o Yim - M3z =12 02 Yim

hl'r'r = hrr

With the same procedure used for the polar part, we can express the transformation of the three
axial functions hg, h; and hs. Thus, we have :

ho=ho + Ms,:
h't =hy + Ms,, - % M3 9)
h's = hy - 2 M3

We can choose an arbitrary function to eliminate one of the three axial functions. So, arbitrarily,
our axial gauge is h’> = 0. And we obtain the following axial perturbed metric tensor :

0 hg® sin 00pYim 0 —h3® 504Yim
ar _ | 6" sin 80¢Yim 0 h{® sin 00¢Yim
tm = 0 h$® sin 009 Yim 0 —h§" 05 Yim
—h§" 500 Yim 0 —hi" 575500 Yim 0

3.3 Einstein’s equations

Our initial perturbation h,, can be considered like an axial perturbation hi;;, and a polar pertur-
bation hff,jl,
Our metric can thus be written : g,, = gfw + hyyp + hﬂ‘l’,l, with gfw the Schwarzschild’s metric.
In vacuum, at the first order in h, we have two systems of equations to solve :

6C, (h®) = 0, 6G,, (hP°) =0,

12



We recall

6Gw’(h) [hﬁ, a (hfa);v - (h;/o&);u + 2 Rauﬁv (go)haB + hg;ul/ - RY (go)hua - Rg(go)hua +
g (i)™ - ( a:8)" - R*(g%)has + R(g")hyu]

If we make the Fourier transformation of the functions depending on time, the matrices h?® and h®®
are exactly the same with coefficients depending on w and r, and a coefficient e,

The general expression of the equations is :

Dgzaf'r [hgx (w7 I‘), h%w(w, I‘)} g;xd) Yl'm (0, d)) =0
DE NP (w, 1), VP (w, 1), T (w, 1), L (w, 1)] OF% Yim (6,¢) = 0

With D, a differential operator in r and w, and Og ¢ a differential operator in 6, ¢ acting on Yim,.

The angular dependence is still present in our development. We need to eliminate it. To do this,
we project these equations on the axial harmonics for the axial tensors, and on the polar harmonics
for the polar tensors.

Finally, we obtain two sets of equations, one for the polar, the other for the axial perturbations,
depending only on the frequency w and on the radius r.

3.3.1 Regge-Wheeler equations for the axial perturbations

From the equation :
D& (b5 (w, 1), hi*(w, 1)] Ol Yim (0,¢) = 0

We obtain the following equations :

Ciwe ™ ho(w, 1) - e [hyr(w, 1) + (¥ - A)r hi(w, 1)] =0

e [w? hipn(w, 1) - 1w (hor(w, T) - 2 ho(w, 1) )] - 22 hy(w, 1) - 272 hi(w, 1) Ve + (2 4+ v0) (v -
Ayl =0

Where € = (1 - %) and € = (1 - Z=)7 1,

We can simplify the second equation with Ggg = 0, and we have :

Ver + (2 +ve)(v-2),, =0

The axial equations become :

—iw e ho(w, r) - e ?* [hy +(w, 1) + (¥ - ) hi(w, 1)] =0 (10)
e~ [w2 hir(w, 1) -iw (hor(w, ) - % ho(w, 1) )] - i—g hi(w, 1) =0
Now, we differentiate the first equation and substitute in the second equation. We have :

ho = 21/,~e h1 - 4” h1 r]

w?

ho,r = = [( 2 urre 81/2 4”) hi -6 v, et hy,, - et hi ).
Hence,
hir[-€®] + hy,[2e* - 6v,e*] + hi]- w - 2v,.e% - 8U%e* + A‘VT’TeQ” + l(l%l)] =0.

We set the function :
7%% (w, 1) = % 1 - %) hi (w, 1).
And a new radial coordinate, called the tortoise radius,
r. =1 + rslog(;- - 1),

linked to the mass of the object as the Schwarzschild radius.

If we express the derivative with respect to r. in function of the derivative with respect to r, we
n - d __ 2v d
obtain : - =€ 4

We have :

31,2r 6v 2V pp
-l (T - T 4 e 4 ]
If we multiply the second order differential equation of h; by %4”, we obtain a second order differ-
ential equation for Z*  and :

T = o 1]+ e[

dr2

T

13



Figure 2: The two potentials, axial (black) and polar (red).

d?ze® w? —dv  24((+1)—2)e” 2v 6v __
2 4 [t o BHOGDR | gy g,
2
Since we know that e =1 - %, we have v, = - %%6721/, it follows that :
d?ze® w2 2v | 3r. 4v _ L(+1) 4v hy =0
G T+ e — S ey = 0.
2

This is the Regge-Wheeler equation :

d2z‘;:z(w,r) + [w2 _ Vaz(r)] Zaz(w7 I') =0
Ve = (1 2)(U0 3

r r3

3.3.2 Zerilli equations for the polar perturbations
From the equation
D2} [N(w, 1), T(w, 1), Ve, 1), Llw, 1)] 05% Yim (6,6) = 0.
We can still separate the radial part and the angular part. We obtain the following set of equations.

(T-V+N)y-(L-v,)N-(24+v,)L=0
Vi + (2 4+ v, - AV + S5 (N + L) + w22 V =0

T-V+L=0 (11)
O +1-v,)@T-1(141)V)-2L=0

T

e—[2N, + gl +v,)2T - 1(141)V),, - 2(2 +

2 T

2v,)L] + 2[5 (2(0(1+1) - 2)T + 1(1+1)N) + w’e > (2T - 1(14+1)V)] = 0

2

We introduce the function :

7PN (w, 1) = 1 [3MV - r L.
UESH)

After similar appropriate manipulations, the polar equations can be reduced to the wave equation,
the Zerilli equation :

d?zP° (w,r) + [UJ2 _ Vpol (I‘)] ZPOZ(UJ, r) -0

drz
ol _ 2(r=2M)[n?(n+1)r34+3Mn?r24+9M3>nr+9M3]
Vp (I') - rd(mr+3M)2
on = (1-1)(1+2)
I's =T + rslog(% -1)

In conclusion, the axial and polar perturbations of a Schwarzschild black hole are described by a
wave equation with different potential barriers. These two potentials are real and depend only on
the radial position and on the black hole mass.
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3.4 Quasi-normal modes

A perturbation can break the symmetry of the Schwarzschild space-time, and can also induce the
emission of gravitational waves. The solutions of the Zerilli and the Regge-Wheeler equations in
vacuum contain many informations about these gravitational waves. We can assume initially the
emission depends totally of the perturbation, but after a very long time, is totally dependent of the
characteristics of the black hole. We define the quasi-normal modes of a black hole as the complex
solutions of the perturbation equations (Regge-Wheeler, Zerilli), verifying the asymptotic conditions
{ ZPobaT _y AeTTs ., 5 400 < outgoing wave
ol,ax wr : : : : (12)
ZPohe® — Be'™™ | r, — —o0 < ingoing wave (nothing can go out of the horizon)

The values of frequency for which the solution satisfy the imposed boundary conditions are the
discrete set of the eigenvalues of the quasi-normal modes. Each frequency is complex, and can be
written as : w = wr + iws. wg is the frequency of the mode oscillation, and we have to discuss wy.
This term is the inverse of the damping time. Indeed the waves take energy from the black hole, and
therefore the oscillations are damped. The case of wy] negative would mean that the amplitude of
the mode explodes ; if that would happen, the black hole would be unstable. However, it has been
proved that Schwarzschild’s black holes are stable against the linear perturbations we consider. So
we exclude this case.

Moreover, we can notice that the polar solution and the axial solution are isospectral, which means
that the polar and the axial equations admit the same set of eigenvalues. This property is a particular
characteristic of black holes. The amplitudes are linked by :

n(n+1)—3iMw
AP (w) = A (w) ST

So in vacuum, we can just solve one equation to know the other solution. We choose to solve the
axial equation.

We set 2% = '/ ®dr+ and the equation to solve becomes :
ipr, +w? — @7 =V =0

With the conditions : ¢ - —w,r« — 00 and ¢ — w,r« — —oo, which corresponds to the boundary
conditions.

The solutions of a such problem exist only in the case where w belongs to a discrete set of frequency.
The works of Leaver tell us that the frequency of the quasi-normal modes depends only of the mass

of the black hole, and wg is proportional to M whereas w; is proportional to —-. If the black hole

3
loses its symmetry, or if has a charge, the frequency would have others dependences.
In the next figure, we have computed some adimensioned quasi-normal modes Mo = Mogr + ior of

a Schwarzschild black hole. These results have driven Leaver to explain the preceeding paragraph.

|| ] Mop+iMay [ Mop+iMay l Mop + iMay
0] 2| 037367 + i0.08896 [ 3 | 0.59944 + 20009270 | 4 | 0.80918 + 0.09416
1| 2| 0.34671 +:0.27391 | 3 | 0.58264 + :0.28130 | 4 [ 0.79663 4 10.28443
2 2| 0.30105 4+ 047828 [ 3 | 0.55168 + #0.47909 [ 4 | 0.77271 + 40.47991
A 2| 0.25150 4+ :0.70514 [ 3 | 0.51196 + 40.69034 | 4 | 0.73984 + 0.68392
For example, if we take the first eigenvalue, op = % = % ; the last equality yields from the

definition of or, since the dimension of the mass is a length (in fact, the "mass” is the Schwarzschild
radius), and the dimension of o is the inverse of a length.
We consider a black hole of n solar masses, M = n M,, we obtain a frequency :

0.37C
2rnM,

VR =
computing it, and knowing the Schwarzschild radius, or ”solar mass”, is M, = 1.5 km, we have :
VR = % kHz.

This is the frequency of the first quasi-normal mode. More the mass of the black hole is high, less
the frequency is high. To detect the waves, we can use detector in several range of frequency :
-LIGO/VIRGO : 1.2 kHz

-LISA : 12 mHz
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4 Perturbations induced by a particle falling into a black
hole

4.1 Context

We consider a massive particle coming from radial infinity and falling in the gravitation field
described by the Schwarzschild metric, along a geodesic. We set mo the mass of the particle. This
one perturbs the black hole metric, and its stress-energy tensor is the source of Einstein’s perturbed
equations :

__ 8nG
5CGu = € T,

In the following development, we will set ¢ = G = 1, like in the previous part.

The particle emits gravitational radiations as it falls until it is absorbed through the Schwarzschild’s
surface of radius 2M.

We need to set the boundary conditions, firstly, we will study the problem of the origin. In a
Euclidean topology, we would require a regularity at the origin, but in the case of Schwarszchild, the
origin is the curvature singularity, so we need to set a ”boundary” condition on the events horizon.
This surface is spacelike, so can be only crossed in one direction, in the sense of radius decreasing.
So, we will assume that there are only ingoing waves on this surface. Nothing can come out of the
black hole horizon.

The other boundary condition is at the infinity. We will look for outgoing waves solutions, such that
the Euclidean topology would require. Indeed, at the infinity, this topology is available because the
metric is reduce to Minkowski’s metric.

4.2 Expression of the energy-momentum tensor

The source term is expressed by the energy-momentum tensor T,,, given by an integral over a
world line of the particle. The integrand contains a four-dimensional invariant § function which is
the guarantee of a divergence-free if the world line is a geodesic in the background geometry.

TH"= my f5(4) (z — z(T))ddZ: % dr

where z(T) = (T(7), R(7), ©(7), (7)) is the quadriposition of the particle at the proper time 7, and
% are the components of the quadrivelocity of this particle along the geodesic. And we are still in
our convention G = ¢ =1.

We recall the normalization relation fspacetime oW (z)y/—gdtz = 1.

With g, the determinant of Schwarzschild’s metric.

In the following part, we will expand this tensor in tensors spherical harmonics.

4.3 Expression on the spherical harmonics basis

We expand T*" on the same basis used to expand dG,., = 0.
We rewrite the basis of spherical harmonics, which depends only of the angles 6, ¢ :

aim = [er er Yim]

bim = V2 n(l) r [er V Yim]

cm =v2n()r [er L Yin]

dim = \/15 m() r ([LV Yim] + % [er V Yin]

fim = -5 m(l) (etm + him)

ios = 5 02 (1) (et - hurm) (13)
ajy) = ler ex Yim]

al(,,lrz = \/i [et €er Ylm}

b = V2 n(l) r [er V Yinm]

A9 = 2 n(l) [er L Yim]

On this basis, after some calculations, we can express the coefficients of the energy-momentum tensor
expansion, analogous to those given in equations (2) and (3) for the metric perturbations.
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Apm = moy 32 (r — 2M)726(r — R(t))Y;5, (O, ®)

B = [31(01+ 1)) 2mor(r — 2M) ™ G6(r — R(1))

Qim = [%l(l + )] 2imoy(r — 2M)715(7' — R(t)) d

Dim = —[31(L+ 1)1 = 1)(1 + 2)} ZZmo'yé(T —

Fim [ll(l + DI -D(I+2)]" 2m075(r — R(t)

Gim = ";2?26(r—R(t>>[%2+s i AR )

AR = moy(1 - i 2e(r — Rt )i (6. 0)

Al(1> sqrt2imoy iR ar r7235(r — R(t))Y, (O, ®)

Bt = 31+ 1)) Fimoy(1 = 2)r6(rp(0)) a2

O — 111+ 1)] " 2moy(1 — 2L)r15(r — R())[hg 08 Yii (0, 9) 22 — 5in@d6 Y7, (O, ) %2]

(14)

lem(O ®)

s'LnO 6¢Ylm(6 (b)

Ll — 5inOde Yy}, (O, &)Lt
)[E[20? — sin?@d2”] L

t

sin©

dt dt

sin©

Where v = ‘ﬂ;“), and X, = 205 (0o — cot®)Yim, Wi, = (8% — cot®0g — sm2®8¢)Ylm

As for the expansion of h,,, also for T),, we have a polar part and an axial part. We have used the
same names of the coordmates for polar part and axial part, and thus : the polar part is expressed
by Aim, Aggﬂ, AlTer, Bim, Blm , Fim and Gy, and the axial part is expressed by an;, le and Dy,

Now we make the Fourier transform of these quantities by multiplying by \ﬁ

4.4 Einstein’s equations

We study a perturbation of the metric ggu, h,.. Since the infalliing particle acts as a perturbation
our metric becomes g,,, = gw + hy,. Seen previously, G, (g2) = 0, so in the natural units at the
first order, G (gab) = Guv(99) + G (hap), and since in a general case, G, = 87T}, we obtain :

0G v (hap) = 87T .

The last equation can be written with the Ricci tensor R,., and the determinant T of the stress-
energy tensor (see annex 6.4).

SRy = 8m(Tpw — 290, T).

Now, we can use the preceeding parts about the calculation of the perturbed Einstein tensor.
We will study separately the polar case and the axial case.

4.4.1 Polar case

The line-element with an axial perturbation can be written, in the Chandrasekhar-Ferrari gauge
(h2 IO,H1 = O,hl = O,hg ZO) as :

ds® = e*[1 + 2NY,,)dt? — e 2 [1 + 2LY3,,]dr? — r2[1 4 2H11Y3,]d0? — r2sin0[1 4 2H33Y1m|dd? —
2T2Vle}/2nLd‘9d¢

Where e?¥ = 1— % =1- %, M the black hole mass. Xi,,, H11 and Hss are defined in the subsection
3.1.

We assume that the temporal dependence of the perturbation is e
transform.

%t This comes from the Fourier

The components of d R, and G, relevant for the polar perturbations are, after computing :

SRo2 = iwYim (& + L — v, ) 2T — (I + 1)V — 2£)

5R03 = —tilm 9(‘/ T — L)

0R23 = —Yimo[(T =V + N),» *(**V) ( v,r)L]

SR11 = (Yim + $in°0Yim — 2222V}, yhera)[r°e ”[u e+ 2( +vr)Vr
§G22 = Yin[2N, + (£ +v,)2T = 11 + )V) (1 + 1) = Rl
+w?e= (2T l(l +1HV) — %(% +2v,)L]

i (N + L) +w?e V)
2v

N - 22y

(15)

17

X, (0,9) — sin® ‘gf dd?

R(t
122 82, (0.0) + 487 sinte "7, 0, )

Wi (©, @)]



And the corresponding components of T, are :

Too = 2z A,

To2 = YimAim
Tos = "2 B} Vi, (16)

Tll = Lﬁ(GlmSin29)/lm - m(l)WlmEm)
With n(1), m(1) and Wi, defined previously.

Writing Einstein’s equations, we obtain the following set of equation :

STrA( )

1 2L\ _ m —
(81“"'; _VW)(QT_Z(Ei_Fl) - 7) - zw\lf _SAl
=8 "Pim =

T+L-V=38 EeT = Spo
(T-V+ Ny = (G = vn)N = (G +v,)L] = —ZFe = Sp
[ZN - o =87 Aim = Sa

H—(%-&-u ) (2T — l(z+1)v) rz(l+1)e N 282 T 2o 4V (T 114 1)V) 2 (14200 L]

_41, _ 167rFy,,

Vir +2(% +v,0)Vir (N+L)+w eV = (r—ra)\/200—D) (1) (112) = o

(17)

We notice that the second, the fourth and the last equations are exactly the same found in the case
of the vacuum in the subsection 3.3.2. Here, we have a source term, represented by Sgo, Sa and Sr.

Zerilli equation with source term We can express these equations with the same transfor-
mations than for the development of the Zerilli equation in the vacuum.
2 zPol(y p o o
ELL 4 [P - VPUr)] 277w, 1) = Sh!
Where SP% is null in the case of the vacuum, and its expression will be defined in the next step.
With the transformations driving from the set of five equations to the Zerilli equation (we don’t write
them, because they are too heavy), we obtain :

pol __ (r—2M)? (r—2M)? M (r—2M)(nr+3r—3M) (r—2M)? r—2M [ (n+1)(nr—3M)
St = 2(nr+3M) Sa— r(nr+3M) SB+ r(nr+3M)2 Sar+ 2(nr+3M) Sar — =] (nr+3M)2
w273 (r—2M)(nr?4+9Mr—12M?) _ (r—2M)? (r—2M)?
(7‘72]\4)(nr+3h1)]530 - r(nr+3M)2 Spo 9. nr+3M SBOTT + SF

4.4.2 Axial case

For the axial case, we will follow exactly the same procedure as for the polar case in the Chandrasekhar-
Ferrari gauge.
The line-element is expressed by :
ds? = 2hosinOYim odtd + 21 5in0Yim odrde — 2ho -8 dtd — 2hy 2 dtdo

sinb

We write the dependence in e™® of Vi by the Legendre polynomials, so Yjm,,¢ = imYim.

We express the terms in .4 and ¢4 for Einstein’s equations. And we obtain the following system
of equations :

dt? dtdr r o dt

e2udh1 + h»l_ —21/d£1,to — 167 zm(l)r Dlm

2 2
dﬂ _d7hg 2 dhg + 2ne h _ 167Tzn(l)re im
{ “ (18)

Regge-Wheeler equation with source term If we apply the same transformations than for
finding the Regge-Wheeler equation, we have the Regge-Wheeler equation with a source term.
d2Za'm(w,T) 2 ax ax __ Qazx
a2t [w* - V¥ ()] Z°%(w, r) = Spin
ar __ 16mie2” 2( 2v _ — 2v
Where Slm - /20— 1) (1+1) (1+2) [T (6 Dlm),’r (l 1)(l + 2)7“6 le]
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4.4.3 Example : the case of a pointmass particle in radial infall

If we have a point particle of mass mo in a radial infall, coming from the infinity and arriving at
r = 75, its angular momentum is null. Moreover, in the Schwarzschild’s space-time, the trajectories
are plane, so, we can take § = 7, the equatorial plane.
The geodesics are solution of the following set of equations coming from the equation of Euler-
Lagrange :

dZ =0

df =0

dt — = B(1 — 2M)~1 (19)
dI'E:— E2—1+¥

With 7, the proper time.

Since the angular momentum is null and it is conserved on the geodesics, giving the coordinates on
the spherical harmonics basis, we have only A;,, and Al(,113 non null. All the others are proportionnals
to the angular momentum. Thus, we have :

Aim = 5575 Oum (0) 7,

Af) = m\/g(if)@lm(())efm.
With g(r) = 22 and f(r) = —i[wt(r) + met(r)].

Along a geodesic, t(r) is given by :

_ 2 r 3/2 r 1/2 (r/2M)1/241
t(I‘) = —2M[§m / + QW / + lni(:/ZM)l/z—l]'
Finally, we have for the source term only the polar part,

Stm = Spp = —(1~ Lﬁl)n:‘lrSOM Yila slVar + w(nii::),M]e_wt(r)'
This means that a particle which falls radially in a Schwarzschild black hole does not excite the axial

perturbations.
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5 Conclusion

We have seen since the background is spherically symmetric, we have to expand every quantity on
the tensors spherical harmonics basis for simplicity.
Moreover, on this basis, we can decompose any perturbation in two parts : one polar, the other axial,
and study them separately.
Once done, we are able to define two equations describing the polar and the axial perturbations,
respectively Zerilli and Regge-Wheeler. In these two equations, we have defined two potentials, very
similar, which depend of the mass black hole. A such equation permit to compute the quasi-normal
modes of the waves, which are totally dependent of the black hole characteristics.
These modes are antiproportional to the mass of their source, and we are able to compute a range
of frequencies. This range permits to develop different kind of interferometers like LISA or LIGO, to
detect waves coming from a specific black-hole. For example, to probe the black hole of our center
galactic, we are expecting a frequency for the first mode of 3 mHz, according to the expression of vg.
We have also seen that a perturbation breaking the symmetry of the black hole is at the origin of
the wave emission. A such perturbation can be a simple particle falling radially into the black hole,
and the source term of the wave is totally dependent of the stress-energy tensor of the particle.
The waves detected come from a black hole of 30-40 solar masses, thus, a frequency for the first mode
of 300-400 Hz, which is in the range of the detector used, LIGO, 30-7000 Hz.
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6 Annex

6.1 Einstein’s and Ricci’s tensors

If we study the Riemann and the Ricci tensors, we can see the both are construted linearly in the
second derivative of g, like G,.,.. So, we can look for a linear combination : G, = C1Ruv +Caguu R.
Making the covariant derivative, we obtain :

Gy = C1Rl/ + C2¢9"" R, = 0, according the conservation law of the stress-energy tensor.

Indeed, g,/ = 0 according to the equivalence principle. We have locally gab;p = Nabj = Tabu -
Iy umey — punar = 0, because the metric 745 is a constant and the Cristoffel symbol T is zero in a
flat space.

The Bianchi identity is : Rxpvwin + Bapneix + Bapsne = 0.

Contracting it with g™, we obtain : Rux.y — Runi + R} n = 0, since Rapea = — Rabde-
Contracting again with g"”, we obtain : R, — Ry, — Ry, = 0.

The last equation can be written (R*” — %g“”R);U = 0. And we obtain, C; = —2C5.

To compute C1, we use the weak field limit : |7T;;] << |Tool|, with i,j = 1,3, so |Gs;| << |Gool, and
|C1(Rij — 39i;R| << |Gool. Hence, Rij = 3gi;R.
In this limit, at the first order, gi;; = 75, and so 2Rxx = R = -Roo + %R.
We obtain Goo = 2C1 Roo,
with Roo = —%nij aa;‘g’z(’j = —%V2900, at the first order.
Hence, Goo = -C1V?goo. Moreover, by the Laplace genralized equation -VZ2goo = 87700 = Goo, and
thus C; = 1.
It yields, Guw = Ruw — g R

6.2 Expression of the perturbed Einstein tensor

From the expression of g/ and g;; developed in sections 2.1.2, we can compute the Ricci tensor :

2Ry = goabggj,bi + 9" hajpi — habggj,bi - goabggi,bj = 9"haip; + habggi,bj + goabggi,aj +
goabhbi,aj - habgl?i,aj - goabggj,m‘ - goabhbj,ai - h’abggj,ai + O(hQ)

And :

2 gijR =
9539 8°*P haw. g — 959° D P 900 5, — 95597 9°° haw g + 959° 1P 0 50 + 9559° 9" P R —
959”98, 0 — 9559™ 9° P hguan — 9559% D 9% 00 — 951 G 90 g + 9 9P 90 0 —
951" 9°P 98,0 + G5 9P 9B e+ Ris g 97 90,0 5 — his g™ %P 90, 50+ his g™ 7P 9% 0 —

hii g% 3% 9B an + 959° 9°P 90 50 — 959° 4°C 90 50 + 959 3°C 9B 0w — 9559 9 9B

+ O(h?)

The terms containing only the Schwarszchild’s metric and not the perturbation are the terms which
correspond to the equation G, (g°) = 0, ans thus, we can delete them to obtain the complete equa-
tion § G, (h) = 0, which are linear in hy, at the first order.

With these quantities, we can find an explicit expression for G, (h), forgetting after have computing
the explicit expression using the expressions of the Ricci’s tensor and the curvature,

50Gw(h) = -z - (hi?‘a);uo- (hi%a)sm * 2 Rapupr (80" + 0 - RE(8%)hua - RE(")hva +
g (hif) ™ - (h3;5)"” - R (g%)has + R(g”)hyv].

6.3 Spherical harmonics

Given a scalar function f — f(r, 6, ¢), a rotation of an angle d¢ around the z-axis creates a new
field, according to the Taylor expansion at the first order.

f(I‘, ¢ - d¢7 0) = (1 + d¢ 805) f(I‘, ¢7 0)
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We set L. = -1 04 , which is an operator describing infinitesimal rotations around z-axis. Similarly,
we define L, and L,. These are the components of the angular momentum operator L =-ir x V
with A = 1, and V, the covariant derivative.

We need to compute the commutator [L; , L;], for i, j € [x,y, z ].

We have

Ly=-ir, V., +ir, V,
Ly=-irt, V. +ir. V, (20)
L,=-ir, Vy +iry, Vg

Computing the different commutators,

Ly, Lyl =[iry Vo 4+ir, Vy,-i1s Vo +1ir. V]
[ y Lyl =[iry V. ,-ir, Vo] -[-iry V. ,-ire Vo] -[-ir. Vy ,-i1; Vy]+ [ir. Vy,-irs V;]
s Ly

=-iry Vo [1V.,1:]-0-0-iry Vy[r.,-1V,]

At this point, we need to recall that [r; , p; | =1k d;j, and p; = -1 h V.
So,
Lo, L, =ihL..

Similarly,
[Ly,L.]=ihLgand [Le , L:] =-1h L,

We can summarize these three relations by :

[LZ 5 L]] =1 €ijk Lk

with €;;%, the Levi-Civita pseudotensor which is equal to 1 if the permutation between i, j and k is
even, -1 if it is odd and 0 if two indices are equal.

The operator L? = L2 + LZ + L% commutes with all the components of L. Thus, we can find a
complete basis of eigenfunctions where L; and L? are diagonalisable. In spherical coordinates, we
have :

L. =-10g,
L, =i (sin ¢ 99 + cot 0 cos ¢ Oy ),
Ly =1 (-cot ¢ dg + cot 8 sin ¢ 9y ).

Hence, we obtain

L? =- (9¢ + Szng 89(81?’“9 (99) ]

[ .5171
If we solve the following system, we can find the eigenvalues.
Lz =m Ylm
L? = 1(0+1) Yim

where Y, are the eigenfunctions of L, and L2 with respective eigenvalues m and 1(1+1). From the
expression of L2, L. and the preeceding system, we obtain :

(21)

Yim (0, ¢) = Om(6) ™

and we can assume that | is an arbitrary integer, and m € [-1, 1] integer. The explicit expression of
O is the following.

© (0) = /BT Puy (cos 6).

In this expression, P, is the associated Legendre polynomial, solution of
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[02 + cot 6 9p + 1(1+1) - Pim (cos ) =0

szn26 }

We have the following relation among the Legendre functions :

Pi_m (cos 0) = (-1)™ 4/ ELQ;: Pim (cos 0)

So, Y, and its complex conjugate are linked by

Y?m (67 ¢) = Yim (9, '¢) = (_1)m Yl»*m (0’ ¢)

The orthonormality condition is

J2Tde [T Y5 (0,0)Yim (0, 9)5ind dO = 8, Oy

and the completeness relation is

S0 St Yo (0',6)Yim (0, 6) = 55150(6 — ¢')0(0 — 0)

Thus, the basis of spherical harmonics Y., is a complete, orthonormal basis on the 2-sphere euclidean
space. It is totally appropriated to describe our system.

6.4 Quadrivectors

Now, we can use the basis of spherical vector harmonics to construct the basis of quadrivectors.
To do that, we set the following matricial equations :

’U(O) = €é¢ Ylm

W =LY
v lm
v? =V Y, 22)
v® = e, Yim

Where e, is the unit radial vector equal to (0, 0, 0, 1), e; is the unit time vector (1, 0, 0, 0), L
the angular momentum operator and V the covariant derivative. We project Y;,, on the spherical
coordinates basis (et, L, V, e,) to find the different quadrivectors.

Hence,

0 —
0,irsingdp Yim, 0,-ir =505 Yim)

- 07 07 - Ylm7 0)
Given any quadrivector f(t, r, 6, ¢), its expression in the harmonics basis is :
f(t, 1, 0, ¢) = i (fl<0 0 4 f<1 SO f(2) ) 4 f(3) @)

With 7 = [ 00", v sind dgds
Thus, each function f;,, depends only of the time coordinate t, and the radial position r, not of the
angles.

This system form a complete basis of spherical harmonics for the quadrivectors. We can extend
every quadrivector on this basis.
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